Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446365

RESUMEN

The Krüppel-like factor 13 (KLF13) has emerged as an important transcription factor involved in essential processes of the central nervous system (CNS). It predominantly functions as a transcriptional repressor, impacting the activity of several signaling pathways with essential roles in the CNS, including the JAK/STAT pathway, which is the canonical mediator of growth hormone (GH) signaling. It is now recognized that GH has important actions as a neurotrophic factor. Therefore, we analyzed the effects of KLF13 on the activity of the JAK/STAT signaling pathway in the hippocampus-derived cell line HT22. Results showed that KLF13 directly regulates the expression of several genes involved in the JAK-STAT pathway, including Jak1, Jak2, Jak3, and Socs1, by associating with their proximal gene promoters. In addition, it was found that in KLF13-deficient HT22 neurons, the expression of Jak1, Stat3, Socs1, Socs3, and Igf1 was dysregulated, exhibiting mRNA levels that went up to 7-fold higher than the control cell line. KLF13 displayed a differential effect on the GH-induced JAK/STAT pathway activity, decreasing the STAT3 branch while enhancing the STAT5 branch. In KLF13-deficient HT22 cells, the activity of the STAT3 branch was enhanced, mediating the GH-dependent augmented expression of the JAK/STAT output genes Socs1, Socs3, Igf1, and Bdnf. Furthermore, GH treatment increased both the nuclear content of KLF13 and Klf13 mRNA levels, suggesting that KLF13 could be part of the mechanisms that maintain the homeostatic state of this pathway. These findings support the notion that KLF13 is a regulator of JAK/STAT activity.


Asunto(s)
Quinasas Janus , Transducción de Señal , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , ARN Mensajero/metabolismo
2.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232848

RESUMEN

Several motor, sensory, cognitive, and behavioral dysfunctions are associated with neural lesions occurring after a hypoxic injury (HI) in preterm infants. Growth hormone (GH) expression is upregulated in several brain areas when exposed to HI conditions, suggesting actions as a local neurotrophic factor. It is known that GH, either exogenous and/or locally expressed, exerts neuroprotective and regenerative actions in cerebellar neurons in response to HI. However, it is still controversial whether GH can cross the blood-brain barrier (BBB), and if its effects are exerted directly or if they are mediated by other neurotrophic factors. Here, we found that in ovo microinjection of Cy3-labeled chicken GH resulted in a wide distribution of fluorescence within several brain areas in the chicken embryo (choroid plexus, cortex, hypothalamus, periventricular areas, hippocampus, and cerebellum) in both normoxic and hypoxic conditions. In the cerebellum, Cy3-GH and GH receptor (GHR) co-localized in the granular and Purkinje layers and in deep cerebellar nuclei under hypoxic conditions, suggesting direct actions. Histological analysis showed that hypoxia provoked a significant modification in the size and organization of cerebellar layers; however, GH administration restored the width of external granular layer (EGL) and molecular layer (ML) and improved the Purkinje and granular neurons survival. Additionally, GH treatment provoked a significant reduction in apoptosis and lipoperoxidation; decreased the mRNA expression of the inflammatory mediators (TNFα, IL-6, IL-1ß, and iNOS); and upregulated the expression of several neurotrophic factors (IGF-1, VEGF, and BDNF). Interestingly, we also found an upregulation of cerebellar GH and GHR mRNA expression, which suggests the existence of an endogenous protective mechanism in response to hypoxia. Overall, the results demonstrate that, in the chicken embryo exposed to hypoxia, GH crosses the BBB and reaches the cerebellum, where it exerts antiapoptotic, antioxidative, anti-inflammatory, neuroprotective, and neuroregenerative actions.


Asunto(s)
Proteínas Aviares/metabolismo , Hormona del Crecimiento/metabolismo , Fármacos Neuroprotectores , Animales , Barrera Hematoencefálica/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/metabolismo , Embrión de Pollo , Pollos/metabolismo , Humanos , Hipoxia/metabolismo , Recién Nacido , Recien Nacido Prematuro , Mediadores de Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-6/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012320

RESUMEN

Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.


Asunto(s)
Hormona de Crecimiento Humana , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Animales Recién Nacidos , Embrión de Pollo , Pollos/metabolismo , Hormona del Crecimiento/metabolismo , Hormona de Crecimiento Humana/uso terapéutico , Hipoxia/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Isquemia/tratamiento farmacológico , Mamíferos/metabolismo , Factores de Crecimiento Nervioso/uso terapéutico , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
4.
Cell Mol Neurobiol ; 42(7): 2171-2186, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33821330

RESUMEN

Prolactin (PRL) is a pleiotropic hormone with multiple functions in several tissues and organs, including the brain. PRL decreases lesion-induced microgliosis and modifies gene expression related to microglial functions in the hippocampus, thereby providing a possible mechanism through which it might participate in neuroimmune modulatory responses and prevent neuronal cell damage. However, the direct contribution of microglial cells to PRL-mediated neuroprotection is still unclear and no studies have yet documented whether PRL can directly activate cellular pathways in microglial cells. The aim of this study is to elucidate in vitro actions of PRL on the immortalized SIM-A9 microglia cell line in basal and LPS-stimulated conditions. PRL alone induced a time-dependent extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Pretreatment with PRL attenuated LPS (200 ng/ml) stimulated pro-inflammatory markers: nitric oxide (NO) levels, inducible nitric oxide synthase (iNOS), interleukins (IL)-6, -1ß and tumor necrosis factor (TNF-α) expression at 20 nM dosage. PRL suppressed LPS-induced nuclear factor (NF)-κappaB (NF-κB) p65 subunit phosphorylation and its upstream p-ERK1/2 activity. In conclusion, PRL exhibits anti-inflammatory effects in LPS-stimulated SIM-A9 microglia by downregulating pro-inflammatory mediators corresponding to suppression of LPS-activated ERK1/2 and NF-κB phosphorylation.


Asunto(s)
Microglía , FN-kappa B , Antiinflamatorios , Humanos , Interleucina-6 , Lipopolisacáridos , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos , Enfermedades Neuroinflamatorias , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II , Prolactina , Factor de Necrosis Tumoral alfa
5.
Neural Plast ; 2021: 9990166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567109

RESUMEN

As a classical growth promoter and metabolic regulator, growth hormone (GH) is involved in development of the central nervous system (CNS). This hormone might also act as a neurotrophin, since GH is able to induce neuroprotection, neurite growth, and synaptogenesis during the repair process that occurs in response to neural injury. After an ischemic insult, the neural tissue activates endogenous neuroprotective mechanisms regulated by local neurotrophins that promote tissue recovery. In this work, we investigated the neuroprotective effects of GH in cultured hippocampal neurons exposed to hypoxia-ischemia injury and further reoxygenation. Hippocampal cell cultures obtained from chick embryos were incubated under oxygen-glucose deprivation (OGD, <5% O2, 1 g/L glucose) conditions for 24 h and simultaneously treated with GH. Then, cells were either collected for analysis or submitted to reoxygenation and normal glucose incubation conditions (OGD/R) for another 24 h, in the presence of GH. Results showed that OGD injury significantly reduced cell survival, the number of cells, dendritic length, and number of neurites, whereas OGD/R stage restored most of those adverse effects. Also, OGD/R increased the mRNA expression of several synaptogenic markers (i.e., NRXN1, NRXN3, NLG1, and GAP43), as well as the growth hormone receptor (GHR). The expression of BDNF, IGF-1, and BMP4 mRNAs was augmented in response to OGD injury, and exposure to OGD/R returned it to normoxic control levels, while the expression of NT-3 increased in both conditions. The addition of GH (10 nM) to hippocampal cultures during OGD reduced apoptosis and induced a significant increase in cell survival, number of cells, and doublecortin immunoreactivity (DCX-IR), above that observed in the OGD/R stage. GH treatment also protected dendrites and neurites during OGD, inducing plastic changes reflected in an increase and complexity of their outgrowths during OGD/R. Furthermore, GH increased the expression of NRXN1, NRXN3, NLG1, and GAP43 after OGD injury. GH also increased the BDNF expression after OGD, but reduced it after OGD/R. Conversely, BMP4 was upregulated by GH after OGD/R. Overall, these results indicate that GH protective actions in the neural tissue may be explained by a synergic combination between its own effect and that of other local neurotrophins regulated by autocrine/paracrine mechanisms, which together accelerate the recovery of tissue damaged by hypoxia-ischemia.


Asunto(s)
Hipoxia de la Célula/fisiología , Glucosa/deficiencia , Hormona del Crecimiento/farmacología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Neuroprotección/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Embrión de Pollo , Pollos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Oxígeno/metabolismo
6.
Vitam Horm ; 114: 91-123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32723552

RESUMEN

Growth hormone (GH) is known to exert several roles during development and function of the nervous system. Initially, GH was exclusively considered a pituitary hormone that regulates body growth and metabolism, but now its alternative extrapituitary production and pleiotropic functions are widely accepted. Through excess and deficit models, the critical role of GH in nervous system development and adult brain function has been extensively demonstrated. Moreover, neurotrophic actions of GH in neural tissues include pro-survival effects, neuroprotection, axonal growth, synaptogenesis, neurogenesis and neuroregeneration. The positive effects of GH upon memory, behavior, mood, sensorimotor function and quality of life, clearly implicate a beneficial action in synaptic physiology. Experimental and clinical evidence about GH actions in synaptic function modulation, protection and restoration are revised in this chapter.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hormona del Crecimiento/metabolismo , Sinapsis/fisiología , Animales , Encéfalo/metabolismo , Humanos , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/fisiología , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Estrés Fisiológico
7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093298

RESUMEN

It is known that growth hormone (GH) is expressed in immune cells, where it exerts immunomodulatory effects. However, the mechanisms of expression and release of GH in the immune system remain unclear. We analyzed the effect of growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), ghrelin (GHRL), and somatostatin (SST) upon GH mRNA expression, intracellular and released GH, Ser133-phosphorylation of CREB (pCREBS133), intracellular Ca2+ levels, as well as B-cell activating factor (BAFF) mRNA expression in bursal B-lymphocytes (BBLs) cell cultures since several GH secretagogues, as well as their corresponding receptors (-R), are expressed in B-lymphocytes of several species. The expression of TRH/TRH-R, ghrelin/GHS-R1a, and SST/SST-Rs (Subtypes 1 to 5) was observed in BBLs by RT-PCR and immunocytochemistry (ICC), whereas GHRH/GHRH-R were absent in these cells. We found that TRH treatment significantly increased local GH mRNA expression and CREB phosphorylation. Conversely, SST decreased GH mRNA expression. Additionally, when added together, SST prevented TRH-induced GH mRNA expression, but no changes were observed in pCREBS133 levels. Furthermore, TRH stimulated GH release to the culture media, while SST increased the intracellular content of this hormone. Interestingly, SST inhibited TRH-induced GH release in a dose-dependent manner. The coaddition of TRH and SST decreased the intracellular content of GH. After 10 min. of incubation with either TRH or SST, the intracellular calcium levels significantly decreased, but they were increased at 60 min. However, the combined treatment with both peptides maintained the Ca2+ levels reduced up to 60-min. of incubation. On the other hand, BAFF cytokine mRNA expression was significantly increased by TRH administration. Altogether, our results suggest that TRH and SST are implicated in the regulation of GH expression and release in BBL cultures, which also involve changes in pCREBS133 and intracellular Ca2+ concentration. It is likely that TRH, SST, and GH exert autocrine/paracrine immunomodulatory actions and participate in the maturation of chicken BBLs.


Asunto(s)
Proteínas Aviares/inmunología , Linfocitos B/inmunología , Bolsa de Fabricio/inmunología , Pollos/inmunología , Ghrelina/inmunología , Hormona Liberadora de Hormona del Crecimiento/inmunología , Hormona del Crecimiento/inmunología , Somatostatina/inmunología , Hormona Liberadora de Tirotropina/inmunología , Animales , Linfocitos B/citología , Bolsa de Fabricio/citología , Técnicas de Cultivo de Célula , Células Cultivadas
8.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383827

RESUMEN

It has been reported that growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert protective and regenerative actions in response to neural damage. It is also known that these peptides are expressed locally in nervous tissues. When the central nervous system (CNS) is exposed to hypoxia-ischemia (HI), both GH and IGF-1 are upregulated in several brain areas. In this study, we explored the neuroprotective effects of GH and IGF-1 administration as well as the involvement of these endogenously expressed hormones in embryonic chicken cerebellar cell cultures exposed to an acute HI injury. To induce neural damage, primary cultures were first incubated under hypoxic-ischemic (<5% O2, 1g/L glucose) conditions for 12 h (HI), and then incubated under normal oxygenation and glucose conditions (HI + Ox) for another 24 h. GH and IGF-1 were added either during or after HI, and their effect upon cell viability, apoptosis, or necrosis was evaluated. In comparison with normal controls (Nx, 100%), a significant decrease of cell viability (54.1 ± 2.1%) and substantial increases in caspase-3 activity (178.6 ± 8.7%) and LDH release (538.7 ± 87.8%) were observed in the HI + Ox group. On the other hand, both GH and IGF-1 treatments after injury (HI + Ox) significantly increased cell viability (77.2 ± 4.3% and 72.3 ± 3.9%, respectively) and decreased both caspase-3 activity (118.2 ± 3.8% and 127.5 ± 6.6%, respectively) and LDH release (180.3 ± 21.8% and 261.6 ± 33.9%, respectively). Incubation under HI + Ox conditions provoked an important increase in the local expression of GH (3.2-fold) and IGF-1 (2.5-fold) mRNAs. However, GH gene silencing with a specific small-interfering RNAs (siRNAs) decreased both GH and IGF-1 mRNA expression (1.7-fold and 0.9-fold, respectively) in the HI + Ox group, indicating that GH regulates IGF-1 expression under these incubation conditions. In addition, GH knockdown significantly reduced cell viability (35.9 ± 2.1%) and substantially increased necrosis, as determined by LDH release (1011 ± 276.6%). In contrast, treatments with GH and IGF-1 stimulated a partial recovery of cell viability (45.2 ± 3.7% and 53.7 ± 3.2%) and significantly diminished the release of LDH (320.1 ± 25.4% and 421.7 ± 62.2%), respectively. Our results show that GH, either exogenously administered and/or locally expressed, can act as a neuroprotective factor in response to hypoxic-ischemic injury, and that this effect may be mediated, at least partially, through IGF-1 expression.


Asunto(s)
Cerebelo/metabolismo , Hormona del Crecimiento/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neuroprotección , Animales , Apoptosis , Biomarcadores , Supervivencia Celular , Células Cultivadas , Cerebelo/irrigación sanguínea , Pollos , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia-Isquemia Encefálica/etiología , Necrosis , Neuronas/metabolismo , Neuroprotección/genética , Daño por Reperfusión/metabolismo , Transducción de Señal
9.
Invest Ophthalmol Vis Sci ; 60(14): 4532-4547, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675424

RESUMEN

Purpose: In the retina, growth hormone (GH) promotes axonal growth, synaptic restoration, and protective actions against excitotoxicity. Notch signaling pathway is critical for neural development and participates in the retinal neuroregenerative process. We investigated the interaction of GH with Notch signaling pathway during its neuroprotective effect against excitotoxic damage in the chicken retina. Methods: Kainate (KA) was used as excitotoxic agent and changes in the mRNA expression of several signaling markers were determined by qPCR. Also, changes in phosphorylation and immunoreactivity were determined by Western blotting. Histology and immunohistochemistry were performed for morphometric analysis. Overexpression of GH was performed in the quail neuroretinal-derived immortalized cell line (QNR/D) cell line. Exogenous GH was administered to retinal primary cell cultures to study the activation of signaling pathways. Results: KA disrupted the retinal cytoarchitecture and induced significant cell loss in several retinal layers, but the coaddition of GH effectively prevented these adverse effects. We showed that GH upregulates the Notch signaling pathway during neuroprotection leading to phosphorylation of the PI3K/Akt signaling pathways through downregulation of PTEN. In contrast, cotreatment of GH with the Notch signaling inhibitor, DAPT, prevented its neuroprotective effect against KA. We identified binding sites in Notch1 and Notch2 genes for STAT5. Also, GH prevented Müller cell transdifferentiation and downregulated Sox2, FGF2, and PCNA after cotreatment with KA. Additionally, GH modified TNF receptors immunoreactivity suggesting anti-inflammatory actions. Conclusions: Our data indicate that the neuroprotective effects of GH against KA injury in the retina are mediated through the regulation of Notch signaling. Additionally, anti-inflammatory and antiproliferative effects were observed.


Asunto(s)
Agonistas de Aminoácidos Excitadores/toxicidad , Hormona del Crecimiento/uso terapéutico , Ácido Kaínico/toxicidad , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Notch/metabolismo , Retina/efectos de los fármacos , Animales , Western Blotting , Células Cultivadas , Pollos , Vectores Genéticos , Inyecciones Intravítreas , Fármacos Neuroprotectores/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo , Transducción de Señal/fisiología , Organismos Libres de Patógenos Específicos , Transfección
10.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509934

RESUMEN

In addition to its role as an endocrine messenger, growth hormone (GH) also acts as a neurotrophic factor in the central nervous system (CNS), whose effects are involved in neuroprotection, axonal growth, and synaptogenic modulation. An increasing amount of clinical evidence shows a beneficial effect of GH treatment in patients with brain trauma, stroke, spinal cord injury, impaired cognitive function, and neurodegenerative processes. In response to injury, Müller cells transdifferentiate into neural progenitors and proliferate, which constitutes an early regenerative process in the chicken retina. In this work, we studied the long-term protective effect of GH after causing severe excitotoxic damage in the retina. Thus, an acute neural injury was induced via the intravitreal injection of kainic acid (KA, 20 µg), which was followed by chronic administration of GH (10 injections [300 ng] over 21 days). Damage provoked a severe disruption of several retinal layers. However, in KA-damaged retinas treated with GH, we observed a significant restoration of the inner plexiform layer (IPL, 2.4-fold) and inner nuclear layer (INL, 1.5-fold) thickness and a general improvement of the retinal structure. In addition, we also observed an increase in the expression of several genes involved in important regenerative pathways, including: synaptogenic markers (DLG1, NRXN1, GAP43); glutamate receptor subunits (NR1 and GRIK4); pro-survival factors (BDNF, Bcl-2 and TNF-R2); and Notch signaling proteins (Notch1 and Hes5). Interestingly, Müller cell transdifferentiation markers (Sox2 and FGF2) were upregulated by this long-term chronic GH treatment. These results are consistent with a significant increase in the number of BrdU-positive cells observed in the KA-damaged retina, which was induced by GH administration. Our data suggest that GH is able to facilitate the early proliferative response of the injured retina and enhance the regeneration of neurite interconnections.


Asunto(s)
Hormona del Crecimiento/farmacología , Ácido Kaínico/toxicidad , Regeneración/efectos de los fármacos , Retina/efectos de los fármacos , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/genética , Embrión de Pollo , Pollos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neurogénesis/fisiología , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Receptor Notch1/genética , Regeneración/genética , Regeneración/fisiología , Retina/metabolismo , Retina/fisiopatología , Factores de Transcripción SOXB1/genética
11.
Neurourol Urodyn ; 37(5): 1574-1582, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-30133853

RESUMEN

AIM: To evaluate the effects of a treatment with leuprolide acetate (LA) on bladder overactivity as well as the expression of gonadotropin releasing hormone receptor (GnRH-R), and neurofilaments NF68 and NF200 in female rats with overactive bladder induced by castration. METHODS: Changes in the urodynamic parameters were determined in SHAM, ovariectomized (OVX) and ovariectomized rats treated with LA (OVX-LA). A semi-quantitative analysis for the expression pattern of GnRH-R and neurofilaments NF68 and NF200 were determined. RESULTS: Forty-three days after ovariectomy, rats from the OVX group have significant lower values for intercontractile interval (ICI) and compliance (C); as well as higher values for basal bladder pressure (BP) and frequency of non-voiding contractions (NVC). The systemic application of LA increased voiding volume (Vv) and pressure threshold (ThP) in the OVX-LA animals. The application of LA reduced the high frequency of NVC in the OVX rats. No significant differences were found for Vv and NVCs between the OVX-LA vs SHAM groups. At the mid part of the bladder, the presence of GnRH-R was evidenced in the urothelium of the SHAM group. The OVX animals showed different pattern of immunolabeling for GnRH-R as well as for neurofilaments NF200 and NF68, whereas in the OVX-LA group the immunofluorescence pattern was similar to the one seen in SHAM bladders (P < 0.05 for OVX vs OVX + LA). CONCLUSIONS: the results suggest that systemic application of LA can improve bladder dysfunction in castrated rats, and perhaps considered as a treatment for overactive bladder conditions secondary to menopause.


Asunto(s)
Leuprolida/farmacología , Ovariectomía , Receptores LHRH/agonistas , Urodinámica/efectos de los fármacos , Animales , Adaptabilidad/efectos de los fármacos , Femenino , Contracción Muscular/efectos de los fármacos , Proteínas de Neurofilamentos/biosíntesis , Proteínas de Neurofilamentos/genética , Ratas , Ratas Wistar , Receptores LHRH/biosíntesis , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Urotelio/efectos de los fármacos , Urotelio/metabolismo
13.
Gen Comp Endocrinol ; 265: 111-120, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29454595

RESUMEN

There is increasing evidence that suggests a possible role for GH in retinal development and synaptogenesis. While our previous studies have focused largely on embryonic retinal ganglion cells (RGCs), our current study demonstrates that GH has a synaptogenic effect in retinal primary cell cultures, increasing the abundance of both pre- (SNAP25) and post- (PSD95) synaptic proteins. In the neonatal chick, kainate (KA) treatment was found to damage retinal synapses and abrogate GH expression. In response to damage, an increase in Cy3-GH internalization into RGCs was observed when administered shortly before or after damage. This increase in internalization also correlated with increase in PSD95 expression, suggesting a neuroprotective effect on the dendritic trees of RGCs and the inner plexiform layer (IPL). In addition, we observed the presence of PSD95 positive Müller glia, which may suggest GH is having a neuroregenerative effect in the kainate-damaged retina. This work puts forth further evidence that GH acts as a synaptogenic modulator in the chick retina and opens a new possibility for the use of GH in retinal regeneration research.


Asunto(s)
Dendritas/metabolismo , Hormona del Crecimiento/farmacología , Ácido Kaínico/toxicidad , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Retina/citología , Sinapsis/metabolismo , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Células Cultivadas , Pollos/metabolismo , Dendritas/efectos de los fármacos , Endocitosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/metabolismo , Hormona de Crecimiento Humana/metabolismo , Neuroprotección/efectos de los fármacos , Sinapsis/efectos de los fármacos
14.
Int J Mol Sci ; 19(2)2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29373545

RESUMEN

This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.


Asunto(s)
Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Hormona Liberadora de Gonadotropina/metabolismo , Hormona del Crecimiento/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Animales , Sistema Nervioso Central/metabolismo , Quimioterapia Combinada , Hormona Liberadora de Gonadotropina/administración & dosificación , Hormona Liberadora de Gonadotropina/uso terapéutico , Hormona del Crecimiento/administración & dosificación , Hormona del Crecimiento/uso terapéutico , Humanos , Fármacos Neuroprotectores/administración & dosificación
15.
Gen Comp Endocrinol ; 255: 90-101, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28974369

RESUMEN

The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH2), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/genética , Iguanas/genética , Factor I del Crecimiento Similar a la Insulina/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Somatostatina/genética , Hormona Liberadora de Tirotropina/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Hormona Liberadora de Hormona del Crecimiento/química , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Filogenia , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/química , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Hormona Liberadora de Tirotropina/química , Hormona Liberadora de Tirotropina/metabolismo
16.
Gen Comp Endocrinol ; 234: 47-56, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27174747

RESUMEN

It is known that growth hormone (GH) and its receptor (GHR) are expressed in granulosa cells (GC) and thecal cells during the follicular development in the hen ovary, which suggests GH is involved in autocrine/paracrine actions in the female reproductive system. In this work, we show that the knockdown of local ovarian GH with a specific cGH siRNA in GC cultures significantly decreased both cGH mRNA expression and GH secretion to the media, and also reduced their proliferative rate. Thus, we analyzed the effect of ovarian GH and recombinant chicken GH (rcGH) on the proliferation of pre-hierarchical GCs in primary cultures. Incubation of GCs with either rcGH or conditioned media, containing predominantly a 15-kDa GH isoform, showed that both significantly increased proliferation as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferating cell nuclear antigen (PCNA) quantification and ((3)H)-thymidine incorporation ((3)H-T) assays in a dose response fashion. Both, locally produced GH and rcGH also induced the phosphorylation of Erk1/2 in GC cultures. Furthermore, GH increased IGF-I synthesis and its release into the GC culture incubation media. These results suggest that GH may act through local IGF-I to induce GC proliferation, since IGF-I immunoneutralization completely abolished the GH-induced proliferative effect. These data suggest that GH and IGF-I may play a role as autocrine/paracrine regulators during the follicular development in the hen ovary at the pre-hierarchical stage.


Asunto(s)
Hormonas Gonadales/metabolismo , Células de la Granulosa/metabolismo , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ovario/metabolismo , Animales , Comunicación Autocrina , Técnicas de Cultivo de Célula , Proliferación Celular , Pollos , Femenino , Comunicación Paracrina
17.
Gen Comp Endocrinol ; 234: 68-80, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27129619

RESUMEN

Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation.


Asunto(s)
Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Apoptosis , Muerte Celular , Pollos , Neuroprotección , Células Ganglionares de la Retina/citología
18.
Gen Comp Endocrinol ; 234: 151-60, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036926

RESUMEN

In the chicken embryo, GH gene expression occurs in the neural retina and retinal GH promotes cell survival and induces axonal growth of retinal ganglion cells. Neuroretinal GH is therefore of functional importance before the appearance of somatotrophs and the onset of pituitary GH secretion to the peripheral plasma (at ED15-17). Endocrine actions of pituitary GH in the development and function of the chicken embryo eye are, however, unknown. This possibility has therefore been investigated in ED15 embryos and using the quail neuroretinal derived cell line (QNR/D). During this research, we studied for the first time, the coexistence of exogenous (endocrine) and local GH (autocrine/paracrine) in retinal ganglion cells (RGCs). In ovo systemic injections of Cy3-labeled GH demonstrated that GH in the embryo bloodstream was translocated into the neural retina and internalized into RGC's. Pituitary GH may therefore be functionally involved in retinal development during late embryogenesis. Cy3-labelled GH was similarly internalized into QNR/D cells after its addition into incubation media. The uptake of exogenous GH was by a receptor-mediated mechanism and maximal after 30-60min. The exogenous (endocrine) GH induced STAT5 phosphorylation and increased growth associated protein 43 (GAP43) and SNAP-25 immunoreactivity. Ex ovo intravitreal injections of Cy3-GH in ED12 embryos resulted in GH internalization and STAT5 activation. Interestingly, the CY3-labeled GH accumulated in perinuclear regions of the QNR/D cells, but was not found in the cytoplasm of neurite outgrowths, in which endogenous retinal GH is located. This suggests that exogenous (endocrine) and local (autocrine/paracrine) GH are both involved in retinal function in late embryogenesis but they co-exist in separate intracellular compartments within retinal ganglion cells.


Asunto(s)
Hormona del Crecimiento/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Pollos , Células Ganglionares de la Retina/citología
19.
Growth Horm IGF Res ; 29: 28-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27082451

RESUMEN

The eye is a target site for GH action and growth hormone has been implicated in diabetic retinopathy and other ocular dysfunctions. However, while this could reflect the hypersecretion of pituitary GH, the expression of the GH gene is now known to occur in ocular tissues and it could thus also reflect excess GH production within the eye itself. The possibility that ocular dysfunctions might arise from endocrine, autocrine or paracrine etiologies of GH overexpression is therefore the focus of this brief review.


Asunto(s)
Comunicación Autocrina , Retinopatía Diabética/metabolismo , Glaucoma/metabolismo , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Comunicación Paracrina , Animales , Ojo/metabolismo , Oftalmopatías/metabolismo , Humanos , Hipófisis/metabolismo
20.
Gen Comp Endocrinol ; 234: 81-7, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26828817

RESUMEN

Comparative studies have previously established that the eye is an extrapituitary site of growth hormone (GH) production and action in fish, amphibia, birds and mammals. In this review more recent literature and original data in this field are considered.


Asunto(s)
Ojo/metabolismo , Hormona del Crecimiento/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...